Technical Debt a Business
Perspective

About me

~15 years - Born and raised in
Developer, tech. lead, Moscow

architect - In Canada since 1992
15+ years - 4 years in Munich
CTO, VP of - 1 month in Warsaw

Development, Head of
Product Management
Practicing Agile since
2005

One of organizers of
Agile Vancouver

About Webinterpret

Webinterpret

“Open worldwide commerce”

$3 Billion+ 29,333 54 Million+
GMV generated by Professional retailers ‘ Product listings localised
retailers using using
Weblnterpret Webinterpret
2007 250+ 5 Offices
Enabling and growing Over 250 employees ‘ USA, UK, France,

Cross Border Trade for
over 8 years

Germany & Poland

Partners : eb-'ij A ' PayPal aMazon GO gle

o |

\
oy _—
T

Technical Debt

Technical Debt o D

Introduced by Ward Cunningham

* Drags long-lived projects and products down \&h _ o
* Technical debt is more a rhetorical category than a technlcal
or ontological category.

— The concept resonates well with the development
community and the business community

— Both sides “get” the metaphor.

* Technical debt is a concept that bridges the gap between:
— Business decisions makers
— Software designers/developers

Technical Debt

Steven McConnell

— Poor design decisions
— Poor coding
— No tests

— Optimize for the present not for the future
— Not moveable release date
> 2a Short term: paid off quickly with refactoring

* Large chunks: easy to track
* Many small bits: cannot track

> 2b Long-term

* Stays there forever

Technical Debt @,

Martin Fowler B

"We don't have time for design" @ "We must ship now and deal with
consequences”
"What is Layering?" "Now we know how we should

have done it"

Technical Debt as Cost of
Change, Jim Highsmith

* Once on the far right of the
curve, all choices are hard

* If nothing is done, it is just
gets worse

* In application with high
technical debt
are practically e

Customer
Responsiveness

Cost of Change {CoC)

Product 4 Technical Debt
Release

lf,,—f"' ' = Optimal CoC
— a——

-

Technical Debt

TD Causes

YVYVYY

\

Making bad assumptions
Inexperience

Poor leadership and team dynamics
‘Superstars’ - egos get in the way
No push back against customers
/sales

Staff turn over with no knowledge
transfer

Subcontractors

TD Causes

A\

Little consideration of code
maintenance

Unclear requirements

Cutting back on process (code
reviews)

Little or no history of design
decisions

Not knowing or adopting best
practices

TD Causes > Technology limitations

> |Legacy code

> Changes in technology

> Growing complexity of the

product

TD Causes

Y. NUNIN

\

Schedule and budget constraints
Poor communication between
developers and management
Changing priorities

Lack of vision, plan, strategy

Trying to make every customer happy
Unclear goals, objectives, and
priorities

Consequences of decisions is not
clear

TD Causes > Changes in Business models
> Targeting different customer
segments
> Merges and acquisitions

> Extending product line

Technical Debt

What we consider a Technical Debt?

* Badly written, poorly structured code
* Code without test coverage

* Duplicated code

* Code thatis not used

* Poorly named classes & modules

* Fragile tests

as well as

* Lack of product documentation

* |ncorrect documentation is even worse

* Upgrade debt (using outdated versions of
libraries and 3rd party s/w)

 Manual setup of test environments

* Not automated build and deployment

 Not adequate monitoring of production
environment

Technical Debt

I

Assuming Cost of one
developer day is $1000

Copyright @ 2011 Philippe Kruchten

Cost of fixing Technical debt is
Borrowed amount (Principal)

Lost of productivity caused by
Technical Debt is Interest you pay
on Principal

“Interests”

In presence of technical debt:

Cost of adding new features is higher

When repaying (fixing), additional cost for
retrofitting already implemented features

Technical debt not repaid => leads to increased
cost, forever!!!

Cost of fixing increases over time
Onboarding new team member takes longer

Technical Debt

Value of the software $100,000

Cost of bug fixing -$15,000
To address TD -$25,000
Real value of software | $60,000

Copyright @ 2011 Philippe Kruchten

Technical Debt

Common Approaches to Technical
Debt Reduction

We are way too
busy to deal with

It now
Next release, next
year for sure

Let’s stop
developing new
features until we
fix this mess

1. Do nothing

2. Replace
3. Incremental

Refactoring

It will get worse

Delivery is late
we need to take
more shortcuts

Customers are Technical Debt

getting unhappy continues to
with missed grow and

deliveries and poor slowing down
quality development

> High-cost

. Do nothing

. Replace > High-risk

3. Incremental

Refactoring Rewrite projects have the highest
failure rate

. Do nothing

. Replace

Incremental

Refactoring

Debt reduction

Requires commitment &
discipline

Control amount of new debt

added to the product

Reducing Debt

\

Make it visible

A\

Incorporate debt reduction as a regular activity

\

Look for opportunities to combine it with feature

development

\

Finish what you've started

\

Make it quick

\

Don't touch if it does not hurt

Versions

B2C 5.0 copy

B2C 4.5 copy

B2C 4.0 copy

Social Debt & Friction

Technical Debt

HFriction

Social Debt Reduced velocity
Defects
Delays

Social debt is a state of a development project which is the

result of the accumulation over time of decisions about the

way the development team (or community) communicates,
collaborates and coordinates.

In other words, decisions about the organizational structure,
the process, the governance, the social interactions, or some
elements inherited through the people: their knowledge,
personality, working style, etc.

Thank You

https://www.linkedin.com/in/michaelvax
https://www.linkedin.com/in/michaelvax

